
66 Industrial/Vol. XXIV/No. 1/2003

 D. W. BASS - J. D. HEMMINGER - T. UMUT

Douglas W. Bass, Graduate
Programs in Software, University of
St. Thomas, St. Paul, Minnesota, USA
e-mail:dbass@stthomas.edu
Jeffrey D. Hemminger, Graduate
Programs in Software, University of
St. Thomas, St. Paul, Minnesota, USA
e-mail:jdhemminger@stthomas.edu
Tolga Umut, Graduate Programs in
Software, University of St. Thomas,
St. Paul, Minnesota, USA
e-mail:tumut@stthomas.edu

Resumen / Abstract
Se propone una experiencia para el usuario más enriquecedora e integrada, basada en la idea del
lifestreams o flujos de tiempo de vida que fue propuesta primeramente por David Gelernter. En ella
las diferentes partes de una experiencia del usuario (mensajes de correo electrónico, temas de
discusión entre grupos, paginas Web, tarjetas electrónicas, etc.) son organizadas activamente por
la computadora de acuerdo con las reglas definidas por el usuario. Estas reglas permiten que la
aplicación lifestream sean almacenadas activamente y auxilien al usuario en el procesamiento de
los datos, en lugar de su almacenamiento pasivo. Se presenta cómo esta experiencia del usuario
puede ser implantada parcialmente mediante el uso de las infraestructuras existentes tales, como
JavaMail Application Programming Interface (API), e Internet Message Access Protocol (IMAP)
mail servers. También se propone una arquitectura basada en un software libre (open-source), que
cuando sea implantada, podría dar una visión más completa y directa del lifestreams.

We propose a richer and more integrated user experience, based on the idea of lifestreams or
streams of living time first proposed by David Gelernter, where the various parts of a user's
experience (email messages, newsgroup posts, web pages, electronic business cards, etc.) are
actively organized by the computer according to user-defined rules. These rules allow the
lifestream application to actively store and assist in managing user data, instead of passively
storing it. We show how this user experience can be partially implemented by using existing
infrastructures such as the JavaMail Application Programming Interface (API), and Internet
Message Access Protocol (IMAP) mail servers. We also propose an architecture based on open-
source software, which, when implemented, would more fully and directly implement the vision of
lifestreams.

Palabras clave / Key words
Lifestreams (flujos en vivo), correo electrónico, servidores de correo electrónico, interacción hombre
máquina, arquitectura de máquinas

Lifestreams, email clients, email servers, human-computer interaction, system architecture

TOWARDS AN INFRASTRUCTURE FOR IMPROVED USER
EXPERIENCES

informática

1. INTRODUCTION
Human interaction with computers is generally based on some set of analogies or similarities,

between components of a computer system and some less technical devices. For example, when
the first widely available graphical user interface (Apple Macintosh) was introduced in 1984, the
analogies were created that 1. the monitor was like a desktop; 2. the output of an application was
like a paper document, and 3. computer directories were like file folders. Graphical user interfaces
were generally considered to be an improvement over command line interfaces (DCL, DOS, JCL,
Unix shells). Graphical user interfaces were considered to be an improvement because, among
other things, they explicitly implemented the above analogies, which were only implied by command
line interfaces. While programmers could equate DOS pathnames with file folders, it was very non-
intuitive for general users to do so.

Recibido:octubre del 2002
Aprobado:diciembre del 2002

Industrial/Vol. XXIV/No. 1/2003 67

TOWARDS AN INFRASTRUCTURE FOR IMPROVED USER EXPERIENCES

While there have been exceptions (most notably, OS/2
Workplace Shell, an object-oriented user interface), graphical user
interfaces have become a generally accepted part of computing.
We believe computer users focus on the positive aspects of
having an explicit implementation of a particular set of analogies.
A set of analogies contains a set of implicit limitations. We believe
the implicit limitations of the set of analogies implemented by
graphical user interfaces have gone generally unnoticed by
computer users, to their detriment.1

In Section 2, we will examine these implicit limitations in greater
detail. In Section 3, we offer an alternative set of analogies, and
describe a possible alternative user experience, based on the
idea of lifestreams, first proposed by David Gelernter of Yale
University.2 In Section 4, we describe how such a user experience
can be implemented using existing computer infrastructures. In
Section 5, we describe how computer infrastructures could be
modified to more efficiently implement this user experience. In
Section 6, we restate our conclusions and suggest directions for
future research.

2. IMPLICIT LIMITATIONS OF
TRADITIONAL COMPUTING ANALOGIES

When graphical user interfaces were first introduced, an icon
of a file folder was used to signify a directory. The fact that
folders could be nested inside other folders suggested an analogy
between a computer and a file cabinet. The limitation of this
analogy is that a file cabinet has no capability of examining its
contents, making copies of those contents, and filing the copies
in new folders, while a computer does. Therefore, using a
computer as a file cabinet, that is, as a passive storage facility, is
a waste of a computer's capability to actively manage its contents
based on user-defined rules and directives.

Another consequence of the analogy between computers and
file cabinets is that there is a many-to-one relationship between
files and folders. A folder may contain many documents or
messages, but a document or email message is usually filed in
one and only one folder. An office worker with a 20-page
document wouldn't put a reproduction of the document in multiple
folders in a file cabinet, even if those folders were related to the
document. It would be a waste of paper and file cabinet space.
Instead, the office worker might put the document in one folder,
and put a single sheet of paper in the other folders, giving the
location of the document. This is essentially what a user of
Microsoft Windows does when a document is put in one folder,
and shortcuts are put in other folders. But this is a time-consuming
process. When a folder is created, the kinds of documents that it
is to contain should be defined, and when a document is filed,
shortcuts should be placed automatically in all folders to which
the document pertains. In other words, there should be a many-
to-many relationship between documents and folders.

When a paper document is filed in a folder, the interaction is
finished. A paper folder contains no information whatsoever
about the items in a folder and their potential interrelationships.

A folder contains no information about how its contents have
changed over time. It only contains a list of its current contents.
This is a waste of a computer's capability for examining and
managing documents, and displaying properties of their
relationships. A computer folder, or any equivalent unit of
organization, should display information about both its contents
and the changes of its contents over time.

In summary, there is a set of analogies which have described
personal computing for almost twenty years. We believe the
implicit limitations of these analogies now outweigh their positive
benefits. In the next two sections, we describe an alternative set
of analogies and a possible user experience based on those
analogies.

3. 1 AN ALTERNATIVE SET OF ANALOGIES
FOR PERSONAL COMPUTING

Instead of making a one-to-one analogy between a single
computer document and a single paper document, users could
consider the outputs of applications, to be like a group with a
large number of members, where the number is sufficiently large
that the members are not individually named. For example, the
outputs of applications could be considered to be like a large
herd of sheep or cattle. In a more extreme example, the OceanStore
Project at the University of California at Berkeley has considered
outputs of applications to be like drops of water in an ocean.3

Paper documents in file folders don't have names, as what they
are is self-evident from their content. The names of outputs of
applications will become another aspect which is handled by the
operating system, in much the same way that the exact location
of a file on a hard disk is handled by the operating system.

If outputs of applications are like unnamed members of a large
group, then the computer could be considered to be like someone
or something which ensures that the members of this large group
go to their intended destination. For example, if the outputs of
applications are like a large herd of sheep, then the computer is
like a sheep dog, herding them to the desired pen. If the outputs
of applications are like a large herd of cattle, then the computer is
like a cowboy or vaquero, making sure the herd moves to its
destination. If the outputs of application are like drops of water,
then the computer is like a plumbing system which ensures water
arrives in various repositories.

If outputs of applications are like unnamed members of a large
group, and the computer is the agent by which the members of
that group go to their intended destination, then the user could
be considered as the owner of the group, and the instructor of
the agent.

As an alternative to files and folders, lifestreams were proposed
by David Gelernter of Yale University.2 A lifestream is a sequence
of various electronic documents (email message, web pages,
business cards, Usenet newsgroup posts, etc.), organized by
time, and searchable by content.4 A lifestream is designed to
contain a person's total electronic life.5 Lifestreams are divided

68 Industrial/Vol. XXIV/No. 1/2003

 D. W. BASS - J. D. HEMMINGER - T. UMUT

into substreams, which are smaller lifestreams organized around
a particular topic. The difference between substreams and folders
is that once the topic of the substream is defined, documents are
added to the substream automatically.

3. 2 A POSSIBLE USER EXPERIENCE BASED
ON LIFESTREAMS

When using lifestreams, a typical user would launch a
lifestream client. This could be done by either launching the
client as an application (as one would launch the email clients
pine or mutt in a Linux environment, for example) or accessing
a web-based client through a browser (as one would access a
Microsoft Outlook web client, for example). A lifestream server
would be accessed by standard transport protocols.

The lifestream server would then notify the user of updated
substreams, that is, substreams which have had documents
added to them since the last session. The documents are
added to these substreams by the lifestream server as they
arrive. The additions could consist of unread email messages
from existing participants in a given substream. If documents
from new participants are received, this would be displayed
in some manner, just as the host of a social function would
like to know when new guests arrive. The additions could be
posts to a newsgroup on a particular topic. The additions
could be web pages which were visited during the user's last
browsing session, or discovered by a web indexer.

The user would spend the rest of the session interacting
with various substreams. Interacting in this context means
opening, creating, modifying and deleting. Opening a
substream involves observing the proper t ies of the
substream, such as the number of participants, the amount of
new documents and participants, and whether activity in this
substream is increasing or decreasing. One of the properties
of a substream would be the list of participants in the
substream, so that a user could send a message to all the
participants in the substream. Opening a substream also
involves examining the documents in a substream, responding
to email messages and newsgroup posts, browsing web pages,
etcétera.

Creating a substream involves selecting a substream name
and selection criteria for documents. This would be very similar
to what is done when using the advanced search features of a
search engine, except that the selection criteria could be applied
to certain parts of documents, such as the subject line of an email
message, for example. Modifying a substream involves changing
either the name or the selection criteria. It should be noted that
the user would not have to reorganize the substream after the
selection criteria had been changed, as the lifestream server would
perform this function. Finally, deleting a lifestream involves
deleting a set of selection criteria. The documents themselves
would not be deleted, but would remain in the main lifestream for
future reorganization.

4. 1 DESIGN ISSUES FOR IMPLEMENTING
LIFESTREAMS USING EXISTING
INFRASTRUCTURES

For the initial prototype of a lifestream client, we chose to
develop an email client that could communicate with existing
email servers. While the University of St. Thomas uses Microsoft
Exchange Server, a lifestream client could be constructed to work
with other email servers, such as Lotus Domino or sendmail.
Implementing a lifestream client to interface with an existing server
structure posed a number of design issues before development.

The first design issue for this project is persistently storing
substream properties, so they are not lost when the client
application is closed. Lifestream clients give sets of selection
criteria to newly created substreams. Folders on contemporary
mail services are roughly equivalent to substreams in a lifestream
client, but folders on email servers will not recognize substream
properties. A substream can contain messages, just as a folder
contains messages. The difference is that substreams have
properties that folders do not, such as selection criteria,
information on the number of documents and participants,
information on the changes to the contents over time, etc.
Substream properties can take many forms, but generally guide
the behavior of the substream by analyzing messages for
matching properties. If a substream property matches with a
given message, that message is added to the substream. The
current solution is to write the substream properties to a text file,
called the substreams properties file, and store the file on the
client end.

The second design issue is utilizing the folder-tree structure
commonly used by email servers. A true implementation of a
lifestream server would require a single lifestream as opposed to
multiple message folders. In a contemporary email server a folder
hierarchy is the default setting. This hierarchy will contain folders
such as INBOX and SENT MAIL. A lifestream client would
contain a single "folder", the main lifestream. This main stream
would contain all messages in a time-ordered list. A lifestream
client will require a basis for working around the existing folder-
tree structure. The solution for this design issue was a class to
iterate through the hierarchy in a standard way to view all
messages on the server for the particular user.

A third design issue is implementing the many-to-many
relationship between messages and substreams. A lifestream
client creates substreams that contain messages that also exist in
other substreams. The messages contained in substreams will
actually be links (URL) to the messages on the server. We envision
that 1. the total number of messages in a given substream will be
significantly smaller than the total number of messages in the
main lifestream, and 2. the number of substreams in which a given
message participates will be significantly smaller than the total
number of substreams. Therefore, a substream could contain
information as to which messages it contains, while a message
could contain information as to which substreams contain it.

Industrial/Vol. XXIV/No. 1/2003 69

TOWARDS AN INFRASTRUCTURE FOR IMPROVED USER EXPERIENCES

This information would represent an implicit sparse matrix to
manage the relationship between messages and substreams.

The prototype was developed using the JavaMail API.6 The
JavaMail API provided a free, portable, and easy to use API for
the development effort. JavaMail creates a session object (an
instance of class session) to authenticate the user to the email
server, a store object which contains the server's folders, and
folder objects which contain email messages. A session object is
obtained from the server, a store object is obtained from the
session object, folder objects are obtained from the store object,
and message objects are obtained from the folder objects.

Before developing a client several open source clients were
considered, including ICEMail7 and Pooka.8 While these two
were selected because both were well documented and written in
Java, there are a multitude of open source clients written in a
variety of languages.9 Our final decision was to extend a very
simple example and focus on the design issues before creating
an elaborate client.

4. 2 A LIFESTREAM CLIENT PROTOTYPE
The client we developed was based on the simple client

example available in the JavaMail tutorial.10 The client allows the
user to view messages, create substreams, and give substreams
properties to match messages. The current prototype allows the
user to specify an email address and/or a subject line as a
substream property. This means that the substreams will look
for the specified properties (an email address and/or a subject
line) in the folder hierarchy on the server and in incoming
messages.

The current lifestream client has also the ability to convert
existing e-mail server's folder tree structure into a partial lifestream
structure when the lifestream client is started. During the
implementation of this conversion, the main consideration is the
consistency between the server side folder list and the substream
properties file.

When the client is first started and the user is logged in to the
server, the application converts folders into substreams. This
process consists of three parts: 1. the client creates a list of
substream objects by reading the substream properties file;
2. inconsistencies between the e-mail server's folder list and the
substream object list are identified, and 3. the inconsistencies are
resolved and the substream properties file is updated.

Part 1: Creating the substream object list
as the properties file is read

As shown in figure 1, the substream properties file is a text
file, in which the names of the substreams and their properties
are recorded. As the client reads through the text, a substream
object is created for each substream name, and its properties
are associated with the substream object. The object is then
put into a collection. At this point, it is assumed that the
substream is not represented as a folder on the email server.
The loop ends when the client reads the EXIT command in
the substream properties file.

Part 2: Checking for inconsistencies between
substreams and server folders

Users can log on to the email server using email clients other
then the lifestream client and change the folder list. Therefore,
there may not be an exact match between the substreams in the
substreams properties file, and the folders on the email server.
Three consistency issues have been identified. These
considerations and their causes are listed in table 1.

Due to the issues listed above, we took a pessimistic approach
(that the inconsistencies will always occur) to enforce consistency
between the email server folder list and the substream properties
file. The assumption is that the substreams do not exist as folders
on the email server until proven otherwise.

The inconsistencies will be identified as the substreams
collection is compared to the folder list on the email server. The
substream objects have a property which signifies if they are
represented as a folder on the server. If the email server has a
folder which is not a substream, then a new substream object is
created with default properties to account for it .

Part 3: Updating the substream properties file
The third part of the consistency check is to update the

substream properties file. This is done when the user ends the
lifestream client session. The substream objects which are not
represented as folders on the server are removed from the
collection, and the substream objects represented on the server
are written to the substream properties file.

The functionality provided by the client includes the ability
to modify and delete existing substreams. Creating a substream
opens a dialog box which prompts for the information required to
create a new substream. The user must provide the client with
the name of the substream, and zero or more properties from the
choices offered (from email address, and/or subject line). Future
versions will offer more selection criteria. The client then creates
a substream object with the specified properties, and a folder
with the specified name on the server. The collection of substream

SUBSTREAM inbox/test2 à Name of the
substream

SUBJECT null
CONDITION null à Properties of the
substream
FROM jdhemminger@stthomas.edu

SUBSTREAM inbox/test1
SUBJECT java
CONDITION null
FROM jdhemminger@stthomas.edu

EXIT

Fig. 1 The substream properties tex file.

70 Industrial/Vol. XXIV/No. 1/2003

 D. W. BASS - J. D. HEMMINGER - T. UMUT

objects is updated. These will be written to the substream
properties file when the application is closed.

Once the folder is created, the substream object is sent to the
search iteration class where it walks through the server's folder
hierarchy to find matching messages. Each folder of messages is
matched against the substream properties, and message matches
are copied into the new folder on the server. It should be noted
that messages were only copied into folders for the client
prototype. Future versions will use links to each of the messages.
A list of folders can be obtained from the store object. An iterator
object steps through each of the folders to check for matches.
Matching is very simple with the JavaMail API. The substream
properties are strings that are used to create search term objects
(instances of class searchTerm). A method of the search term
object can be called on a given folder to search through the
messages and return a list of message objects with matching
criteria. This is a list of individual message objects, and can be
iterated through to populate the substream.

Modifying an existing substream can take on many different
forms. When a user begins using the client for the first time, it is
likely that there are folders on the server created with a different
client. These folders become default substreams, or substreams
without properties, described earlier when the client checks for
consistency. Modifying these substreams means adding
properties.

In other cases the user may wish to rename the substream, or
modify some of the substream properties. This can all be
accomplished via the modify substream option. When a
substream property (other than the substream name) is changed,
the messages in the substream are matched with the new
properties, then the search iteration class is called again to match
the new properties with the server folder structure. Messages in
the substream which do not match the new criteria are removed.

Deleting a substream deletes the folder from the server and
removes the substream name and properties from the substream
properties file. The messages in the folder are deleted permanently,
as happens on most conventional email clients. Therefore the
client eliminates the folder from view, the substream properties
are removed from the persistent storage, and the folder is
eliminated from the server.

The prototype was successful in dealing with all of the design
considerations but one. The search iterator tackled the issue of
dealing with the server's folder structure relatively easily, and the
text file dealt with persistent storage very well. The essential
limitation is the folder structure used by the email server itself.
While it is possible to create a lifestream client to access a
conventional email server, the discrepancies between folders and
substreams create some difficulties. It is easier and more efficient
to develop a lifestream server, than it is to develop a lifestream
client to use a conventional email server.

5. AN INFRASTRUCTURE EXPLICITLY
DESIGNED FOR SUPPORTING
LIFESTREAMS

The next phase of the project will involve implementing a
complete email service, to make full use of the benefits of
lifestreams. The project will involve creating a web-based client
and mail server to support a single lifestream rather than a folder
hierarchy. The first stage of this project will implement an email
server and deploy a web server for the email client. The web
client will be developed with Java Server Pages.11 JSP technology
allows a mix of regular, static HTML and dynamically generated
content from servlets, all in one. JSPs actually generate servlets
behind the scene, but it was more natural to write regular HTML
and Java, instead of a large number of Java println statements in
a servlet. JSPs have the advantage of being platform independent,
as opposed to Active Server Pages, and use Java rather than
VBScript- a much more powerful language. Just as many open-
source email clients exist, many open-source email servers exist,
such as RH Email Server,12 Hamster,13 and Iloha Mail.14 We have
started a concurrent implementation of the RH Email Server
running on Linux and Microsoft's Exchange Server running on
Windows 2000 Server.

There are several options available for open-source web
application servers. Currently we are running Apache Tomcat
4.1.0, available at the Apache Jakarta Project.15 Tomcat is very
easy to use and set up, and has worked well as a development
environment. Other web application servers include Skunk
Web ,16 jo!,17 and the Jetty HTTP Server.18

TABLE 1
Possible inconsistencies between substream objects and e mail server folders

Inconsistency Cause

The substream properties file can have substreams,
which do not exist on the email server as folders

Substreams that exist on the email server as folders
can be deleted using other email clients, such as
outlook express

The email server can have folders that exist as
substreams on the substream properties file

Substreams that exist on the email server as folders
have not been deleted during the use of other email
clients

The email server can have folders that do not exist as
substreams on the substream properties file

Folders can be created on the email server using
other email clients

Industrial/Vol. XXIV/No. 1/2003 71

TOWARDS AN INFRASTRUCTURE FOR IMPROVED USER EXPERIENCES

The second stage will increase substream functionality. The
client will be enhanced so that more selection criteria can be
applied to other attributes of email messages. A search engine
will be added to index the keywords of all messages. This will
allow the user to add keywords to a substream property, and
thereby search messages based on what the messages are
"about". An example of this is shown in table 2.

In this example the substream would contain links to email
messages from tumut@stthomas.edu that contained the keywords
Java, email clients, and lifestreams. The client will assume multiple
keywords to be connected by a logical OR, but will give the user
the ability to use other operators such as AND, and NOT.

A promising search engine solution is the Apache Lucene
project. This open source solution has excellent indexing
capabilities (200mb per hour for batch and incremental adds),
and has been designed to be easily integrated into the email
server.19 The Lucene project was designed to make it simple to
integrate into such applications as an email service. The search
engine will read through messages and create a dynamic index of
them. This index will be searched by the client for substream
properties. Matches will generate links from messages into the
substreams.

Another reason for using Lucene, instead of JavaMail's
matching capabilities, is that in the future, our lifestreams will
contain outputs from many different applications.

A third phase of implementation will be to add a database to
monitor user behavior. This will help to conduct user group
testing, and provide an easy form of analyzing use to improve
the service at a later date. The concept behind this is to log user
behavior, such as clicks, to map how the user uses the client.
This type of information will allow us to improve the client with
new agents or by developing machine learning to interact with
the user. We expect users to find messages which don't fit any
substream selection criteria. The user should be able to implicitly
modify the selection criteria of a substream simply by assigning
an unassigned message to that substream. If a new keyword
becomes a frequent part of new incoming messages, the client
would offer to create a new substream for these messages.
Improvements to the user interface design will also be easily
pulled from this database.

In summary, a possible future architecture explicitly designed
for the support of lifestreams is shown in figure 2.

6. CONCLUSIONS AND FUTURE RESEARCH
We have shown that the desktop metaphor implicit restricts

users 1. to use computers for passive storage as opposed to
active management of content; 2. to a many-to-one
relationship between application outputs and directories, as
opposed to a many-to-many relationship, and 3. to limited
vision of the contents of directories. We offered alternative
analogies to the desktop metaphor, described an improved
user experience based on these alternative analogies, and
described an architecture for implementing this experience
using open-source solutions.

TABLE 2
Some selection criteria for substreams

Property Description Example

Messages from Tolga Umut,
tumut@stthomas.edu

Messages about Java, "email clients", lifestreams

Fig. 2 An architecture for supporting lifestreams.

72 Industrial/Vol. XXIV/No. 1/2003

 D. W. BASS - J. D. HEMMINGER - T. UMUT

2º Encuentro Iberoamericano de Estudiantes de Computación,
Informática y Sistemas

ENECIS 2003
Del 17 al 20 de Marzo del 2003

Instituto Superior Politécnico José A. Echeverría y Palacio de las Convenciones.
Ciudad de La Habana, Cuba

Future research includes 1. the development of clients and
servers to fully implement the analogies given; 2. testing the
clients and servers with typical users, and 3. expanding the range
of application outputs accessible to the clients and servers.

REFERENCES
1. FERTIG, S.; E. FREEMAN AND D. GELERNTER: "Lifes-treams: An

Alternative to the Desktop Metaphor", In ACM SIGCHI Conference
on Human Factors in Computing Systems Conference Companion
(CHI '96), pp. 410 - 411, ACM Press, 1996

2. GELERNTER, D.: "The Cyber-Road not Taken", The
Washington Post, April, 1994.

3. KUBIATOWICZ, J.: "OceanStore: Global Scale Persistent
Storage", Frontiers in Distributed Systems Workshop, Aspen,
Colorado, June, 2000.

4. FREEMAN, E. AND D. GELERNTER: "LifeStreams: A storage
Model for Personal data", ACM SIGMOD Bulletin 25, 1,
pp. 80-86, March, 1996.

5. FREEMAN E. AND S. J. FERTIG: "Lifestreams: Organizing
your Electronic Life", In AAAI Fall Symposium: AI

Applications in Knowledge Navigation and Retrieval
Cambridge, MA, November, 1995.

6. Sun Microsystems, JavaMail API, http://java.sun.com/
products/javamail/

7. ICEM@IL, http://www.icemail.org
8. POOKA, A.: Java Email Client, http://suberic.net/pooka/
9. Sourceforge.net, http://sourceforge.net/
10. JavaMail Tutorial, http://java.sun.com/products/javamail/
11. Sun Microsystems, Java Server Pages, http://java.sun.com/

products/jsp/
12. RH Server Development Project, http://rhems.sourceforge.net/
13. Hamster Classic: http://www.tglsoft.de/misc/ hamster_en.htm
14. Iloha Mail http://ilohamail.org/main.php
15. The Jakarta Site-Apache Tomcat, http://jakarta.apache.org/tomcat/
16. SkunkWEB http://skunkweb.sourceforge.net/about.html
17. Tagtraum Industries, http://www.tagtraum.com/
18. Jetty Java HTTP Servlet Server http://jetty.mortbay.org/jetty/

index.html
19. GOETZ., B.: "The Lucene Search Engine; Powerful, Flexible

and Free", JavaWorld , September, 2000, http://
www.javaworld.com/javaworld/jw-09-2000/jw-0915-lucene.html

