D. W.BASS-J. D. HEMMINGER - T. UMUT

informatica

TOWARDS AN INFRASTRUCTURE FOR IMPROVED USER
EXPERIENCES

Douglas W. Bass, Graduate
Programs in Software, University of
<. Thomas, . Paul, Minnesota, USA
e-mail:dbass@stthomas.edu

Jeffrey D. Hemminger, Graduate
Programs in Software, University of
<. Thomas, &. Paul, Minnesota, USA
e-mail:jdhemminger @stthomas.edu
Tolga Umut, Graduate Programsin
Software, University of &. Thomas,
<. Paul, Minnesota, USA

e-mail: tumut@stthomas.edu

Recibido: octubre del 2002
Aprobado: diciembre del 2002

66 Industria/Vol. XXIV/No. 1/2003

Resumen / Abstract

Se propone una experiencia para el usuario mas enriquecedora e integrada, basada en laidea de
lifestreams o flujos de tiempo de vida que fue propuesta primeramente por David Gelernter. En elle
las diferentes partes de una experiencia del usuario (mensajes de correo electrénico, temas de
discusi6n entre grupos, paginas Web, tarjetas el ectrénicas, etc.) son organizadas activamente po
la computadora de acuerdo con las reglas definidas por el usuario. Estas reglas permiten que le
aplicacion lifestream sean almacenadas activamente y auxilien al usuario en €l procesamiento de
los datos, en lugar de su almacenamiento pasivo. Se presenta cOmo esta experiencia del usuaric
puede ser implantada parcial mente mediante el uso de las infraestructuras existentes tales, comc
JavaMail Application Programming Interface (API), e Internet M essage Access Protocol (IMAP
mail servers. También se propone unaarquitecturabasadaen un softwarelibre (open-source), que
cuando sea implantada, podria dar unavisién méas completay directa del lifestreams.

We propose a richer and more integrated user experience, based on the idea of lifestreams ol
streams of living time first proposed by David Gelernter, where the various parts of a user':
experience (email messages, newsgroup posts, web pages, electronic business cards, etc.) are
actively organized by the computer according to user-defined rules. These rules allow the
lifestream application to actively store and assist in managing user data, instead of passively
storing it. We show how this user experience can be partially implemented by using existing
infrastructures such as the JavaMail Application Programming Interface (API), and Interne
Message Access Protocol (IMAP) mail servers. We also propose an ar chitecture based on open
sour ce softwar e, which, when implemented, would morefully and directly implement thevision o
lifestreams.

Palabrasclave / Key words
Lifestreams (flujosen vivo), correo electrénico, servidores de correo el ectrénico, interaccién hombre
magquina, arquitectura de maguinas

Lifestreams, email clients, email servers, human-computer interaction, system architecture

1. INTRODUCTION

Human interaction with computersis generally based on some set of analogies or similarities
between components of a computer system and some less technical devices. For example, wher
the first widely available graphical user interface (Apple Macintosh) was introduced in 1984, the
anal ogies were created that 1. the monitor was like a desktop; 2. the output of an application was
like apaper document, and 3. computer directories werelikefilefolders. Graphical user interface
were generally considered to be an improvement over command line interfaces (DCL, DOS, JCL
Unix shells). Graphical user interfaces were considered to be an improvement because, among
other things, they explicitly implemented the above anal ogies, which were only implied by commanc
lineinterfaces. While programmerscould equate DOS pathnameswith filefolders, it wasvery non
intuitive for general usersto do so.

TOWARDSAN INFRASTRUCTURE FOR IMPROVED USER EXPERIENCES

While there have been exceptions (most notably, OS/2
Norkplace Shell, an object-oriented user interface), graphical user
nterfaces have become agenerally accepted part of computing.
Ne believe computer users focus on the positive aspects of
1aving an explicit implementation of aparticular set of analogies.
A set of analogiescontainsaset of implicit limitations. Webelieve
‘he implicit limitations of the set of analogies implemented by
yraphical user interfaces have gone generally unnoticed by
somputer users, to their detriment.!

In Section 2, wewill examinetheseimplicit limitationsin greater
Jetail. In Section 3, we offer an alternative set of analogies, and
Jescribe a possible alternative user experience, based on the
dea of lifestreams, first proposed by David Gelernter of Yae
Jniversity.? In Section 4, wedescribe how such auser experience
>an be implemented using existing computer infrastructures. In
Section 5, we describe how computer infrastructures could be
nodified to more efficiently implement this user experience. In
Section 6, werestate our conclusions and suggest directionsfor
‘uture research.

2.IMPLICIT LIMITATIONS OF

TRADITIONAL COMPUTING ANALOGIES

When graphical user interfaceswerefirst introduced, anicon
Of afile folder was used to signify a directory. The fact that
‘olderscould be nested inside other fol ders suggested an anal ogy
Jetween a computer and a file cabinet. The limitation of this
nalogy isthat afile cabinet has no capability of examining its
>ontents, making copies of those contents, and filing the copies
n new folders, while a computer does. Therefore, using ¢
somputer asafilecabinet, that is, as apassive storage facility, is
awaste of acomputer's capability to actively manageits contents
Jased on user-defined rules and directives.

Another consequence of the anal ogy between computersand
‘ile cabinetsisthat thereis a many-to-one relationship between
‘iles and folders. A folder may contain many documents or
nessages, but a document or email message is usualy filed in
>ne and only one folder. An office worker with a 20-page
Jocument wouldn't put areproduction of thedocument inmultiple
‘oldersin afile cabinet, even if those folders were related to the
Jocument. It would be awaste of paper and file cabinet space.
nstead, the office worker might put the document in one folder,
and put a single sheet of paper in the other folders, giving the
ocation of the document. This is essentially what a user of
Microsoft Windows doeswhen adocument is put in onefolder,
and shortcutsareput in other folders. But thisisatime-consuming
yrocess. When afolder iscreated, thekinds of documentsthat it
s to contain should be defined, and when a document is filed,
shortcuts should be placed automatically in al foldersto which
‘he document pertains. Inother words, there should be amany-
‘0-many relationship between documents and folders.

When a paper document isfiled in afolder, theinteractionis
‘inished. A paper folder contains no information whatsoever
about theitemsin afolder and their potential interrelationships.

A folder contains no information about how its contents have
changed over time. It only containsalist of itscurrent contents.
This is a waste of a computer's capability for examining and
managing documents, and displaying properties of their
relationships. A computer folder, or any equivalent unit of
organi zation, should display information about both its contents
and the changes of its contents over time.

In summary, there is aset of analogies which have described
personal computing for almost twenty years. We believe the
implicit limitations of these anal ogies now outweigh their positive
benefits. Inthe next two sections, we describe an alternative set
of analogies and a possible user experience based on those
analogies.

3. 1IANALTERNATIVE SET OF ANALOGIES
FOR PERSONAL COMPUTING

Instead of making a one-to-one analogy between a single
computer document and a single paper document, users could
consider the outputs of applications, to be like a group with a
large number of members, where the number is sufficiently large
that the members are not individually named. For example, the
outputs of applications could be considered to be like a large
herd of sheep or cattle. Inamoreextreme example, the OceanStore
Project at the University of Californiaat Berkeley hasconsidered
outputs of applications to be like drops of water in an ocean.?
Paper documentsin file folders don't have names, as what they
areis self-evident from their content. The names of outputs of
applicationswill become another aspect whichishandled by the
operating system, in much the same way that the exact location
of afileon ahard disk is handled by the operating system.

If outputs of applicationsarelike unnamed membersof alarge
group, then the computer could be considered to belike someone
or something which ensuresthat the members of thislarge group
go to their intended destination. For example, if the outputs of
applications are like alarge herd of sheep, then the computer is
like asheep dog, herding them to the desired pen. If the outputs
of applicationsarelikealarge herd of cattle, thenthecomputer is
like a cowboy or vaquero, making sure the herd moves to its
destination. If the outputs of application are like drops of water,
then the computer islike aplumbing system which ensureswater
arrivesin various repositories.

If outputs of applicationsarelike unnamed membersof alarge
group, and the computer is the agent by which the members of
that group go to their intended destination, then the user could
be considered as the owner of the group, and the instructor of
the agent.

Asandlternativetofilesandfolders, lifestreamswere proposed
by David Gelernter of YaleUniversity.?2 A lifestreamisasequence
of various electronic documents (email message, web pages,
business cards, Usenet newsgroup posts, etc.), organized by
time, and searchable by content* A lifestream is designed to
contain a person'stotal electronic life.®> Lifestreams are divided

Industrial/Vol. XX1V/No. 1/2003 6 7

D. W.BASS-J. D. HEMMINGER - T. UMUT

into substreams, which are smaller lifestreams organized around
aparticular topic. Thedifference between substreamsand folders
isthat once thetopic of the substream is defined, documentsare
added to the substream automatically.

3. 2APOSSIBLE USER EXPERIENCE BASED

ON LIFESTREAMS

When using lifestreams, a typical user would launch a
lifestream client. Thiscould be done by either launching the
client asan application (asonewould launch the email clients
pineor muttinaLinux environment, for example) or accessing
aweb-based client through abrowser (as one would access a
Microsoft Outlook web client, for example). A lifestream server
would be accessed by standard transport protocols.

Thelifestream server would then notify the user of updated
substreams, that is, substreams which have had documents
added to them since the last session. The documents are
added to these substreams by the lifestream server as they
arrive. The additions could consist of unread email messages
from existing participantsin agiven substream. |If documents
from new participants are received, this would be displayed
in some manner, just as the host of a social function would
like to know when new guests arrive. The additions could be
posts to a newsgroup on a particular topic. The additions
could beweb pages which were visited during the user's last
browsing session, or discovered by aweb indexer.

The user would spend the rest of the session interacting
with various substreams. Interacting in this context means
opening, creating, modifying and deleting. Opening a
substream involves observing the properties of the
substream, such asthe number of participants, the amount of
new documents and participants, and whether activity inthis
substream isincreasing or decreasing. One of the properties
of a substream would be the list of participants in the
substream, so that a user could send a message to all the
participants in the substream. Opening a substream also
involves examining the documentsin asubstream, responding
to email messages and hewsgroup posts, browsing web pages,
etcétera.

Creating a substream involves selecting a substream name
and selection criteriafor documents. Thiswould bevery similar
to what is done when using the advanced search features of a
search engine, except that the selection criteria could be applied
to certain parts of documents, such asthe subject line of an email
message, for example. Modifying asubstreaminvolveschanging
either the name or the selection criteria. It should be noted that
the user would not have to reorganize the substream after the
selection criteriahad been changed, asthelifestream server would
perform this function. Finally, deleting a lifestream involves
deleting a set of selection criteria. The documents themselves
would not be deleted, but would remaininthemain lifestream for
future reorganization.

68 Industria/Vol. XXIV/No. 1/2003

4. 1DESIGN ISSUESFOR IMPLEMENTING
LIFESTREAMSUSING EXISTING
INFRASTRUCTURES

For the initia prototype of a lifestream client, we chose tc
develop an email client that could communicate with existing
email servers. Whilethe University of St. Thomas uses Microsoft
Exchange Server, alifestream client coul d be constructed to worlk
with other email servers, such as Lotus Domino or sendmail
Implementing alifestream client to interfacewith an existing serve
structure posed a number of design issues before development

The first design issue for this project is persistently storing
substream properties, so they are not lost when the clien
application is closed. Lifestream clients give sets of selectior
criteriato newly created substreams. Folders on contemporary
mail servicesareroughly equivalent to substreamsin alifestrean
client, but folders on email serverswill not recognize substrean
properties. A substream can contain messages, just as afolde
contains messages. The difference is that substreams have
properties that folders do not, such as selection criteria
information on the number of documents and participants
information on the changes to the contents over time, etc
Substream properties can take many forms, but generally guide
the behavior of the substream by analyzing messages fo
matching properties. If a substream property matches with .
given message, that message is added to the substream. The
current solution isto write the substream propertiesto atext file
called the substreams properties file, and store the file on the
client end.

The second design issueis utilizing the folder-tree structure
commonly used by email servers. A true implementation of .
lifestream server would require asinglelifestream as opposed tc
multiple messagefolders. Inacontemporary email server afolde
hierarchy isthedefault setting. Thishierarchy will containfolders
such as INBOX and SENT MAIL. A lifestream client woulc
contain asingle "folder”, the main lifestream. This main strean
would contain all messagesin atime-ordered list. A lifestrean
client will require abasis for working around the existing folder:
tree structure. The solution for this design issue was a class tc
iterate through the hierarchy in a standard way to view al
messages on the server for the particular user.

A third design issue is implementing the many-to-many
relationship between messages and substreams. A lifestrean
client creates substreamsthat contain messagesthat also existir
other substreams. The messages contained in substreams wil
actualy belinks (URL) tothemessagesontheserver. Weenvisior
that 1. the total number of messagesin agiven substream will be
significantly smaller than the total number of messages in the
main lifestream, and 2. the number of substreamsinwhichagiver
message participates will be significantly smaller than the tota
number of substreams. Therefore, a substream could contair
information as to which messages it contains, while a message
could contain information as to which substreams contain it

TOWARDSAN INFRASTRUCTURE FOR IMPROVED USER EXPERIENCES

This information would represent an implicit sparse matrix to
nanage the rel ationship between messages and substreams.

The prototype was devel oped using the JavaMail API.® The
JavaMail API provided afree, portable, and easy to use API for
‘he development effort. JavaMail creates a session object (an
nstance of class session) to authenticate the user to the email
server, a store object which contains the server's folders, and
‘older objectswhich contain email messages. A sessionobjectis
btained from the server, a store object is obtained from the
session object, folder objects are obtained from the store object,
and message objects are obtained from the folder objects.

Before developing a client several open source clients were
>onsidered, including ICEMail” and Pooka.? While these two
vere sel ected because both were well documented and writtenin
Java, there are a multitude of open source clients written in &
sariety of languages® Our final decision was to extend a very
simple example and focus on the design issues before creating
an elaborate client.

1.2A LIFESTREAM CLIENT PROTOTYPE

The client we developed was based on the simple client
xampleavailableinthe JavaMail tutorial .1° Theclient allowsthe
Jser to view messages, create substreams, and give substreams
Jropertiesto match messages. The current prototype allowsthe
Iser to specify an email address and/or a subject line as ¢
substream property. This means that the substreams will look
‘or the specified properties (an email address and/or a subject
ine) in the folder hierarchy on the server and in incoming
nessages.

The current lifestream client has also the ability to convert
Xisting e-mail server'sfolder tree structureinto apartial lifestrear
structure when the lifestream client is started. During the
mplementation of thisconversion, the main considerationisthe
>onsistency between the server sidefolder list and the substream
opertiesfile.

Whentheclientisfirst started and theuser isloggedinto the
server, the application converts folders into substreams. This
arocess consists of three parts: 1. the client creates a list of
substream objects by reading the substream properties file,
2. inconsistencies between the e-mail server'sfolder list and the
substream object list areidentified, and 3. theinconsistenciesare
‘esolved and the substream propertiesfileis updated.

Qart 1. Creating the substream object list
asthe propertiesfileisread

Asshowninfigure 1, the substream propertiesfileisatext
‘ile, inwhich the names of the substreams and their properties
wrerecorded. Astheclient readsthrough thetext, asubstream
bject iscreated for each substream name, and its properties
are associated with the substream object. The object isthen
Jut into a collection. At this point, it is assumed that the
substream is not represented as a folder on the email server.
T'he loop ends when the client reads the EXIT command in
‘he substream propertiesfile.

SUBSTREAM inbox/test2 ~ —| - Name of the

substream —

SUBJECT null

CONDITION null -
substream

FROM jdhemminger@stthomas.edu

- Properties of the

*kk

SUBSTREAM inbox/testl
SUBJECT java

CONDITION null

FROM jdhemminger@stthomas.edu

*kk

EXIT

Fig. 1 The substream propertiestexfile.

Part 2: Checking for inconsistencies between
substreams and server folders

Users can log on to the email server using email clients other
then the lifestream client and change the folder list. Therefore,
there may not be an exact match between the substreamsin the
substreams properties file, and the folders on the email server.
Three consistency issues have been identified. These
considerations and their causes are listed in table 1.

Duetotheissueslisted above, wetook apessimistic approach
(that theinconsistencieswill alwaysoccur) to enforce consistency
between theemail server folder list and the substream properties
file. Theassumptionisthat the substreamsdo not exist asfolders
on the email server until proven otherwise.

The inconsistencies will be identified as the substreams
collection is compared to the folder list on the email server. The
substream objects have a property which signifies if they are
represented as a folder on the server. If the email server has a
folder which is not a substream, then a new substream object is
created with default propertiesto account for it.

Part 3: Updating the substream propertiesfile

The third part of the consistency check is to update the
substream properties file. Thisis done when the user ends the
lifestream client session. The substream objects which are not
represented as folders on the server are removed from the
collection, and the substream objects represented on the server
are written to the substream propertiesfile.

The functionality provided by the client includes the ability
to modify and del ete existing substreams. Creating a substream
opensadial og box which promptsfor theinformation required to
create a new substream. The user must provide the client with
the name of the substream, and zero or more properties from the
choices offered (from email address, and/or subject ling). Future
versionswill offer moreselection criteria. Theclient then creates
a substream object with the specified properties, and a folder
with the specified nameon theserver. The collection of substream

Industrial/Vol. XX1V/No. 1/2003 69

D. W.BASS-J. D. HEMMINGER - T. UMUT

objects is updated. These will be written to the substream
propertiesfile when the application is closed.

Oncethefolder iscreated, the substream object is sent to the
search iteration class where it walks through the server's folder
hierarchy to find matching messages. Each folder of messagesis
matched against the substream properties, and message matches
are copied into the new folder on the server. It should be noted
that messages were only copied into folders for the client
prototype. Futureversionswill uselinksto each of the messages.
A list of folderscan be obtained fromthe storeobject. Aniterator
object steps through each of the folders to check for matches.
Matching isvery simplewith the JavaMail API. The substream
properties are strings that are used to create search term objects
(instances of class searchTerm). A method of the search term
object can be called on a given folder to search through the
messages and return a list of message objects with matching
criteria. Thisisalist of individual message objects, and can be
iterated through to populate the substream.

Modifying an existing substream can take on many different
forms. When auser begins using theclient for thefirst time, itis
likely that there are folders on the server created with adifferent
client. Thesefoldersbecome default substreams, or substreams
without properties, described earlier when the client checks for
consistency. Modifying these substreams means adding
properties.

In other casesthe user may wish to rename the substream, or
modify some of the substream properties. This can all be
accomplished via the modify substream option. When a
substream property (other than the substream name) i s changed,
the messages in the substream are matched with the new
properties, thenthe searchiteration classiscalled againto match
the new propertieswith the server folder structure. Messagesin
the substream which do not match the new criteriaare removed.

Deleting a substream deletes the folder from the server and
removes the substream name and properties from the substream
propertiesfile. Themessagesinthefolder are deleted permanently,
as happens on most conventional email clients. Therefore the
client eliminates the folder from view, the substream properties
are removed from the persistent storage, and the folder is
eliminated from the server.

The prototypewas successful in dealing with all of thedesigr
considerations but one. The search iterator tackled the issue 0
dealing with the server'sfolder structurerelatively easily, and the
text file dealt with persistent storage very well. The essentia
limitation is the folder structure used by the email server itself
While it is possible to create a lifestream client to access
conventional email server, the discrepancies between foldersanc
substreams create somedifficulties. Itiseasier and moreefficien
to develop a lifestream server, than it isto develop alifestrean
client to use a conventional email server.

5. AN INFRASTRUCTURE EXPLICITLY
DESIGNED FOR SUPPORTING
LIFESTREAMS

The next phase of the project will involve implementing .
complete email service, to make full use of the benefits o
lifestreams. The project will involve creating aweb-based clien
and mail server to support asinglelifestream rather than afolde
hierarchy. Thefirst stage of this project will implement an emai
server and deploy a web server for the email client. The wet
client will be devel oped with Java Server Pages' JSPtechnol ogy
alowsamix of regular, static HTML and dynamically generatex
content from servlets, al in one. JSPsactually generate servlets
behind the scene, but it was more natural to writeregular HTML
and Java, instead of alarge number of Javaprintln statementsir
aservlet. JSPshavethe advantage of being platformindependent
as opposed to Active Server Pages, and use Java rather thar
VB Script- amuch more powerful language. Just as many open
source email clients exist, many open-source email servers exist
such asRH Email Server,'2 Hamster,*® and llohaMail.** We have
started a concurrent implementation of the RH Email Serve
running on Linux and Microsoft's Exchange Server running or
Windows 2000 Server.

There are several options available for open-source wet
application servers. Currently we are running Apache Tomca
4.1.0, available at the Apache Jakarta Project.’®> Tomcat is very
easy to use and set up, and has worked well as a developmen
environment. Other web application servers include Skunl
Web ,%6jo!,'7 and the Jetty HTTP Server. 18

TABLE 1

Possible inconsistencies between substream objects and e mail server folders

Inconsistency

Cause

The substream properties file can have substreams,
which do not exist on the email server as folders

Substreams that exist on the email server as folders
can be deleted using other email clients, such as
outlook express

The email server can have folders that exist as
substreams on the substream properties file

Substreams that exist on the email server as folders
have not been deleted during the use of other email
dients

The emall server can have folders that do not exist as
substreams on the substream properties file

Folders can be created on the email server using
other email dients

70 Industria/Vol. XXIV/No. 1/2003

TOWARDSAN INFRASTRUCTURE FOR IMPROVED USER EXPERIENCES

The second stage will increase substream functionality. The
slient will be enhanced so that more selection criteria can be
ypplied to other attributes of email messages. A search engine
wvill be added to index the keywords of all messages. This will
ilow the user to add keywords to a substream property, and
‘hereby search messages based on what the messages are
‘about”. Anexample of thisisshownintable 2.

In this example the substream would contain links to email
nessagesfrom tumut@stthomas.edu that contained the keywords
Java, email clients, andlifestreams. Theclientwill assumemultiple
<eywordsto be connected by alogical OR, but will givethe user
‘he ability to use other operators such asAND, and NOT.

A promising search engine solution is the Apache Lucene
oject. This open source solution has excellent indexing
sapabilities (200mb per hour for batch and incremental adds),
and has been designed to be easily integrated into the email
srver.® The Lucene project was designed to make it simple to
ntegrate into such applications as an email service. The search
anginewill read through messages and create adynamicindex of
‘hem. This index will be searched by the client for substream
yroperties. Matches will generate links from messages into the
substreams.

Another reason for using Lucene, instead of JavaMail's
matching capabilities, is that in the future, our lifestreams will
contain outputs from many different applications.

A third phase of implementation will be to add a database to
monitor user behavior. This will help to conduct user group
testing, and provide an easy form of analyzing use to improve
theservice at alater date. The concept behind thisistolog user
behavior, such as clicks, to map how the user uses the client.
Thistype of information will allow usto improve the client with
new agents or by developing machine learning to interact with
the user. We expect users to find messages which don't fit any
substream selection criteria. The user should beabletoimplicitly
modify the selection criteria of asubstream simply by assigning
an unassigned message to that substream. If a new keyword
becomes a frequent part of new incoming messages, the client
would offer to create a new substream for these messages.
Improvements to the user interface design will also be easily
pulled from this database.

Insummary, apossiblefuture architecture explicitly designed
for the support of lifestreamsis shownin figure 2.

6. CONCLUSIONSAND FUTURE RESEARCH

TABLE 2 We have shown that the desktop metaphor implicit restricts
SreetEsien et e siberEaeE users 1. to use computers for passive storage as opposed to
active management of content; 2. to a many-to-one
Property Description | Example relationship between application outputs and directories, as
opposed to a many-to-many relationship, and 3. to limited
Tolga Umut, vision of the contents of directories. We offered alternative
Messages from tumut@stthomas.edu analogies to the desktop metaphor, described an improved
user experience based on these alternative analogies, and
Messages about Java, "email dients’, lifestreams described an architecture for implementing this experience
using open-source solutions.
Tomcat Lifestream Server Lifestream
RMI/ Lucene %
lopP
HTTP Jsps F
H % = ; Substreams
D
|
HTML :
History
Internet
Fig. 2 Anarchitecture for supporting lifestreams.

Industrial/Vol. XXIV/No. 1/2003 7 1

D. W.BASS-J. D. HEMMINGER - T. UMUT

Future research includes 1. the development of clients and
servers to fully implement the analogies given; 2. testing the
clientsand serverswithtypical users, and 3. expanding therange
of application outputs accessible to the clients and servers. 11

REFERENCES

1 FERTIG S; E.FREEMANAND D.GEL ERNTER: "Lifestreams An
Alternativeto the Desktop Metaphor”, INACM S GCHI Conference
onHumanFactorsin Computing SystemsConference Companion
(CHI'96), pp. 410- 411, ACM Press 1996

2. GELERNTER, D.: "The Cyber-Road not Taken", The
Washington Post, April, 1994.

3. KUBIATOWICZ, J.: "OceanStore: Global Scale Persistent
Storage”, Frontiersin Distributed SystemsWorkshop, Aspen,
Colorado, June, 2000.

4.FREEMAN, E. AND D. GELERNTER: "LifeStreams: A storage
Model for Personal data', ACM SIGMOD Bulletin 25, 1,
pp. 80-86, March, 1996.

5. FREEMAN E. AND S. J. FERTIG: "Lifestreams: Organizing
your Electronic Life", In AAAI Fall Symposium: Al

Applications in Knowledge Navigation and Retrieval
Cambridge, MA, November, 1995.

6. Sun Microsystems, JavaMail API, http://java.sun.com/
products/javamail/

7. ICEM@IL, http://www.icemail.org

8. POOKA, A.: JavaEmail Client, http://suberic.net/pookal

9. Sourceforge.net, http://sourceforge.net/

10. JavaMail Tutorial, http://java.sun.com/products/javamail/

11. Sun Microsystems, Java Server Pages, http://java.sun.com/
products/jsp/

12. RH Server Development Project, http://rhems.sourceforge.net

13. Hamgter Classic: http://www.tglsoft.de/misc/ hamster_en.htm

14. lloha Mail http://ilohamail .org/main.php

15.The Jakarta Site-Apache Tomcat, hitp://jakarta.gpache.org/tomcat.

16. SkunkWEB http://skunkweb.sourceforge.net/about.html

17. Tagtraum Industries, http://www.tagtraum.com/

18. Jetty JavaHTTP Servlet Server http://jetty.mortbay.org/jetty.
index.html

19. GOETZ., B.: "The Lucene Search Engine; Powerful, Flexible
and Free", JavaWorld, September, 2000, http:/
www.javaworld.com/javaworl d/jw-09-2000/jw-0915-lucene. html

2° Encuentro Iberoamericano de Estudiantes de Computacion,
Informatica y Sistemas

ENECIS 2003

7 2 Industria/Vol. XXIV/No. 1/2003

Del 17 al 20 de M arzo del 2003
ior Politécnico José A. Echeverriay Palacio delas Convenciones.
Ciudad deLa Habana, Cuba

